Hypoxia Activated EGFR Signaling Induces Epithelial to Mesenchymal Transition (EMT)
نویسندگان
چکیده
Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial-Mesenchymal Transition (EMT). EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM) probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor) is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor). Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.
منابع مشابه
Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice
Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...
متن کاملEpidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression.
Aberrant epidermal growth factor receptor (EGFR) signaling is a major cause of tumor progression and metastasis; the underlying mechanisms, however, are not well understood. In particular, it remains elusive whether deregulated EGFR pathway is involved in epithelial-mesenchymal transition (EMT), an early event that occurs during metastasis of cancers of an epithelial origin. Here, we show that ...
متن کاملHypoxia-induced Bmi1 promotes renal tubular epithelial cell–mesenchymal transition and renal fibrosis via PI3K/Akt signal
Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromat...
متن کاملNotch signaling induces EMT in OSCC cell lines in a hypoxic environment
Epithelial-mesenchymal transition (EMT) is an early step in the acquisition of invasiveness by malignant tumors. It has been clarified that the tumor microenvironment affects malignancy in a number of different carcinomas, in particular, that a hypoxic environment induces EMT. Activation of Notch signaling induces EMT, but it remains unclear how the Notch pathway is involved in oral squamous ce...
متن کاملTransforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that induces growth arrest, tissue fibrosis, and epithelial-mesenchymal transition (EMT) through activation of Smad and non-Smad signaling pathways. EMT is the differentiation switch by which polarized epithelial cells differentiate into contractile and motile mesenchymal cells. Cell motility and invasive capacity are acti...
متن کامل